[OPGELOST]Hermite Interpolatie: dom vraagje

2de semestervak op 5 studiepunten
Ahoeffel
heeft den knop voor het posten van berichten gevonden!
heeft den knop voor het posten van berichten gevonden!
Berichten: 14
Lid geworden op: 05 jan 2009, 18:54

[OPGELOST]Hermite Interpolatie: dom vraagje

Berichtdoor Ahoeffel » 18 jun 2010, 17:59

Jow iedereen

kheb een dom vraagje en heb niet veel tijd eraan te spenderen...

pg 108, formule (9.25) is d/dx(Li^2)(xj) = 0

hoe moet je dat interpreteren: de afgeleide van (Li(xj)^2) of de afgeleide van Li(x) . (xj) ^2 of iets anders?
Tom
Doctor in de forumwetenschappen
Doctor in de forumwetenschappen
Berichten: 3851
Lid geworden op: 05 okt 2008, 08:11
Locatie: Vilvoorde

Re: Hermite Interpolatie: dom vraagje

Berichtdoor Tom » 18 jun 2010, 18:16

Ik zou het niet weten, en dat wil ik ook niet...


je weet toch dat we dat bewijs niet moeten kennen he? :p
JeroenV
Beginnend forumgebruiker
Beginnend forumgebruiker
Berichten: 40
Lid geworden op: 03 okt 2008, 20:47
Locatie: Grimbergen

Re: Hermite Interpolatie: dom vraagje

Berichtdoor JeroenV » 18 jun 2010, 18:22

spijtig genoeg gebruikt ge da ook ergens anders Tom, ergens waar ge da wél moet kennen
t is gewoon de afgeleide van Li² in het punt xj geëvalueerd
dus 2LiLi'(xj) :)
Laatst gewijzigd door JeroenV op 19 jun 2010, 18:43, 1 keer totaal gewijzigd.
Ahoeffel
heeft den knop voor het posten van berichten gevonden!
heeft den knop voor het posten van berichten gevonden!
Berichten: 14
Lid geworden op: 05 jan 2009, 18:54

Re: Hermite Interpolatie: dom vraagje

Berichtdoor Ahoeffel » 19 jun 2010, 11:35

Oké, thx Jeroen ;-) tis wat ik dacht :-)

En Tom: heeft hij gezegd dat we dat niet moesten kennen? :o
Tom
Doctor in de forumwetenschappen
Doctor in de forumwetenschappen
Berichten: 3851
Lid geworden op: 05 okt 2008, 08:11
Locatie: Vilvoorde

Re: Hermite Interpolatie: dom vraagje

Berichtdoor Tom » 19 jun 2010, 11:48

Het bewijs moet je niet kennen maar het resultaat wel
Gebruikersavatar
Gill
Heeft dit forum graag
Heeft dit forum graag
Berichten: 166
Lid geworden op: 19 okt 2008, 16:29
Locatie: Ternat
Contacteer:

Re: Hermite Interpolatie: dom vraagje

Berichtdoor Gill » 19 jun 2010, 11:52

Euhm wat jeroen zei klopt tom, in het hoofdstuk interpolatie van de hermiteveelterm staan die eigenschappen niet bewezen, in de les heeft hij letterlijk gezegd dat je die wel moet kunnen bewijzen en dat hij dat sowieso vraagt op het examen als je hermite krijgt
Afbeelding
Tom
Doctor in de forumwetenschappen
Doctor in de forumwetenschappen
Berichten: 3851
Lid geworden op: 05 okt 2008, 08:11
Locatie: Vilvoorde

Re: Hermite Interpolatie: dom vraagje

Berichtdoor Tom » 19 jun 2010, 12:07

Ja, maar het gaat over het bewijs voor de foutterm bij Hermite, die moet je niet kennen

De bewijzen bij hermite moet je natuurlijk wel kennen
Gebruikersavatar
Gill
Heeft dit forum graag
Heeft dit forum graag
Berichten: 166
Lid geworden op: 19 okt 2008, 16:29
Locatie: Ternat
Contacteer:

Re: Hermite Interpolatie: dom vraagje

Berichtdoor Gill » 19 jun 2010, 12:52

Dus klopt wat jeroen zegt ^^
Afbeelding

Terug naar “Basistechnieken voor computersimulaties”

Wie is er online

Gebruikers op dit forum: Geen geregistreerde gebruikers en 1 gast

cron